Nonmetric Maximum Likelihood Multidimensional Scaling from Directional Rankings Of" Similarities
نویسندگان
چکیده
A maximum likelihood estimation procedure is developed for multidimensional scaling when (dis)similarity measures are taken by ranking procedures such as the method of conditional rank orders or the method of triadic combinations. The central feature of these procedures may be termed directionality of ranking processes. That is, rank orderings are performed in a prescribed order by successive first choices. Those data have conventionally been analyzed by ShepardKruskal type of nonmetric multidimensional scaling procedures. We propose, as a more appropriate alternative, a maximum likelihood method specifically designed for this type of data. A broader perspective on the present approach is given, which encompasses a wide variety of experimental methods for collecting dissimilarity data including pair comparison methods (such as the method of tetrads) and the pick-M method of similarities. An example is given to illustrate various advantages of nonmetric maximum likelihood multidimensional scaling as a statistical method. At the moment the approach is limited to the case of one-mode two-way proximity data, but could be extended in a relatively straightforward way to two-mode two-way, two-mode three-way or even three-mode three-way data, under the assumption of such models as INDSCAL or the two or three-way unfolding models.
منابع مشابه
Quantification of health states with rank-based nonmetric multidimensional scaling.
OBJECTIVES An alternative methodology is introduced to generate cardinal valuations of health states. This methodology is based on the ranking of differences between health states combined with an associated scaling model that transforms the individual rank data into group values on the interval level. METHODS Data were collected in a Dutch EuroQol EQ-5D valuation study, in which a representa...
متن کاملScaling techniques for modeling directional knowledge.
A common way for researchers to model or graphically portray spatial knowledge of a large environment is by applying multidimensional scaling (MDS) to a set of pairwise distance estimations. We introduce two MDS-like techniques that incorporate people's knowledge of directions instead of (or in addition to) their knowledge of distances. Maps of a familiar environment derived from these procedur...
متن کاملNonmetric multidimensional scaling: Neural networks versus traditional techniques
In this paper we consider various methods for nonmetric multidimensional scaling. We focus on the nonmetric phase, for which we consider various alternatives: Kruskal’s nonmetric phase, Guttman’s nonmetric phase, monotone regression by monotone splines, and monotone regression by a monotone neural network. All methods are briefly described. We use sequential quadratic programming to estimate th...
متن کاملA Comparison of Nonmetric Multidimensional Scaling, Principal Components and Reciprocal Averaging for the Ordination of Simulated Coenoclines, and Coenoplanes1
The use of nonmetric multidimensional scaling as an ordination method has been studied by the use of simulated coenoclines and coenoplanes. It was found that the method always produced better ordinations than principal components analysis and in most cases better than reciprocal averaging, providing the multidimensional scaling was calculated using a space of the same dimensions as the simulate...
متن کاملApplying Metric and Nonmetric Multidimensional Scaling to Ecological Studies: Some New Results'
Metric (eigenanalysis) and nonmetric multidimensional scaling strategies for ecological ordination were compared. The results, based on simulated coenoplane data showing varying degrees of species turnover on two independent environmental axes, suggested some strong differences between metric and nonmetric scaling methods in their ability to recover underlying nonlinear data structures. Prior d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000